Molecular Mechanism Underlying Abnormal Differentiation of Neural Progenitor Cells in the Developing Down Syndrome Brain.
نویسندگان
چکیده
Down syndrome (DS) is caused by trisomy for human chromosome 21. Individuals with DS commonly exhibit mental retardation, which is associated with abnormal brain development. In the neocortex of the DS brain, the density of neurons is markedly reduced, whereas that of astrocytes is increased. Similar to abnormalities seen in DS brains, mouse models of DS show deficits in brain development, and neural progenitor cells that give rise to neurons and glia show dysregulation in their differentiation. These suggest that the dysregulation of progenitor fate choices contributes to alterations in the numbers of neurons and astrocytes in the DS brain. Nevertheless, the molecular basis underlying these defects remains largely unknown. We showed that the overexpression of two human chromosome 21 genes, DYRK1A and DSCR1, contributes to suppressed neuronal differentiation of progenitors in the Ts1Cje mouse model of DS. In addition, the effect of DYRK1A and DSCR1 overexpression on neuronal differentiation is mediated by excessive attenuation of the transcription factor NFATc. Additionally, we demonstrated that an increased dosage of DYRK1A contributes to elevated potential of Ts1Cje progenitors to differentiate into astrocytes and enhanced astrogliogenesis in the Ts1Cje neocortex. Further, we linked the increased dosage of DYRK1A to dysregulation of STAT, a transcription factor critical for astrogliogenesis. Together, our studies identify critical pathways responsible for the proper differentiation of neural progenitors into neurons and astrocytes, with direct implications for the anomalies in brain development observed in DS.
منابع مشابه
High neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملDerived Mesenchymal Stem Cells in Addiction Related Hippocampal Damages
The brain is an important organ that controls all sensory and motor actions, memory, and emotions. Each anatomical and physiological modulation in various brain centers, results in psychological, behavioral, and sensory-motor changes. Alcohol and addictive drugs such as opioids and amphetamines have been shown to exert a great impact on brain, specifically on the hippocampus. Emerging evidence ...
متن کاملP 129: The Role of Overexpression Transcription Factor BRN 4 in Multiple Sclerosis
Adult neurogenesis is a process of producing nerve cells from their progenitor that occurs in some areas in the brain such as the hypothalamus. Low activity in this area plays a role in neural degeneration and diseases such as multiple sclerosis, epilepsy and depression. MS is a neurodegenerative disease with a permanent disability that the main reason for it is axonal degeneration and neuronal...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملO13: Human Neural Stem/Progenitor Cells Derived from Epileptic Human Brain in A Self-Assembling Peptide Nanoscaffold Attenuates Neuroinlammation in Traumatic Brain Injury in Rats
Traumatic brain injury (TBI) is a disruption in the brain functions following a head trauma. Cell therapy may provide a promising treatment for TBI. Human neural stem cells cultured in self-assembling peptide scaffolds have been proposed as a potential novel method for cell replacement treatment after TBI. In the present study, we accessed the effects of human neural stem/progenitor cells (hNS/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan
دوره 137 7 شماره
صفحات -
تاریخ انتشار 2017